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SYSTEM OF EQUATIONS

Motivation

Example: There are 27 pieces of fruit in a barrel, and twice as many
oranges as apples. How many apples and oranges are in the barrel?

Mathematically, we can formulate the problem as the following linear
system

x + y = 27

y = 2x

Note: There are may problems which can be modelled as linear

system equations.
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SYSTEM OF EQUATIONS

A system of linear equations will be of the form

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

. . .
...

...
am1x1 + am2x2 + · · · + amnxn = bm

We can write in the matrix form as
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




x1
x2
...

xn

 =


b1
b2
...

bm


So the general form Ax = b
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ELEMENTARY ROW OPERATIONS

The following operations applied to any matrix, yields a rwo-equivalent
form.

Interchanges: The order of two rows can be changed (Ri ↔ Rj ).

Scaling: Multiplying a row by a nonzero constant (Ri → cRi ).

Replacement: The row can be replaced by the sum of that row
and a nonzero multiple of any other row (Ri → Ri + cRj ).
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SYSTEM OF LINEAR EQUATIONS

An inconsistent example

Consider the following linear
system

(
1 2
2 4

)(
x1
x2

)
=

(
4
5

)

Clearly this system of equations is
not solvable or inconsistent.
( Why?)

FIGURE: No solutions

No Solutions: If rank(A) 6=rank([A|b]).
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SYSTEM OF LINEAR EQUATIONS

Uniqueness of solutions

Consider the following linear
system

(
1 2
1 −1

)(
x1
x2

)
=

(
4
2

)

The above system has unique
solution x1 = 8/3 and x2 = 2/3.

FIGURE: Unique Solution

Unique Solution: If rank(A) =rank([A|b]) = No of variables.
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SYSTEM OF LINEAR EQUATIONS

Rank deficient matrices/Infinite number of solutions

Consider the following linear
system

(
1 2
2 4

)(
x1
x2

)
=

(
2
4

)

The above system has infinite
number of solutions.

FIGURE: Unique Solution

Unique Solution: If rank(A) =rank([A|b]) < No of variables.
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SYSTEM OF LINEAR EQUATIONS

Solution Techniques

Direct Methods:
Find a solution in a finite number of operations by transforming the
system into an equivalent system that is ‘easier’ to solve.
Diagonal, upper or lower triangular systems are easier to solve.
Number of operations is a function of system size n.

Iterative Methods:
Computes successive approximations of the solution vector x for a
given A and b, starting from an initial point x0.
Total number of operations is uncertain, may not converge.
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GAUSSIAN ELIMINATION

Consider a system Ax = b. By using elementary row operations, the
augmented matrix [A|b] is transformed into an upper triangular matrix
(all elements below the pivot element are 0)

Row Echelon Form: After applying forward elimination, the augmented
matrix will be in the following row echelon form:

a′11 a′12 · · · a′1n b′1
0 a′22 · · · a′2n b′2
...

...
. . .

...
...

0 0 · · · a′mn b′m


Back Substitution: Solve for xi :

xi =
b′i −

∑n
j=i+1 a′ijxj

a′ii
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DRAWBACKS OF GAUSSIAN ELIMINATION

Recall:

Example: Solve the following system

1.133x1 + 5.281x2 = 6.414
24.14x1 − 1.210x2 = 22.93

Solution: Using 4-digit rounding, we obtain the row echelon form as

[
1.133 5.281 6.414

0 −113.7 −113.8

]

Hence x1 = 0.9956, x2 = 1.001 but the exact solution is x1 = 1, x2 = 1.
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PIVOTING STRATEGIES (PARTIAL PIVOTING)

When the pivotal element is very small, the
multipliers will be large.

Adding numbers of widely different magnitudes
can lead to a loss of significance.

To reduce error, row interchanges are made to
maximize the magnitude of the pivot element.
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PARTIAL PIVOTING

Forward Elimination: After applying forward elimination, the
augmented matrix at step−i will be in the following row echelon form:

a(i)
11 a(i)

12 · · · a(i)
1i · · · a(i)

1j · · · a(i)
1n b(i)

1

0 a(i)
22 · · · a(i)

2i · · · a(i)
2j · · · a(i)

2n b(i)
2

...
...

. . .
...

. . .
...

. . .
...

...
0 0 · · · a(i)

ii · · · a(i)
ij · · · a(i)

in b(i)
i

...
...

. . .
...

. . .
...

. . .
...

...
0 0 · · · a(i)

ji · · · a(i)
jj · · · a(i)

jn b(i)
j

...
...

. . .
...

. . .
...

. . .
...

...
0 0 · · · a(i)

mi · · · a(i)
mj · · · a(i)

mn b(i)
m



If max{|a(i)
ii |, |a

(i)
i+1i |, . . . , |a

(i)
ji |, . . . , |a

(i)
mi |} = |a(i)

ji | 6= 0 then swap row i
with row j .
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PARTIAL PIVOTING

Example: Solve the following system

1.133x1 + 5.281x2 = 6.414
24.14x1 − 1.210x2 = 22.93

Solution: Using 4-digit rounding and partial pivoting, we obtain the row

echelon form as [
24.14 −1.210 22.93

0 5.338 5.338

]
Hence x1 = 1, x2 = 1.
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DRAWBACKS OF PARTIAL PIVOTING

Example: Solve the following system

30x1 + 591400x2 = 591700
5.291x1 − 6.130x2 = 46.78

Solution: Using 4-digit rounding (normalized floating point form), we

obtain the row echelon form as[
30 591400 591700
0 −104300 −104400

]

Hence x1 = −10, x2 = 1.001 but the exact solution is x1 = 10, x2 = 1.
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DRAWBACKS OF DIRECT METHODS

Question: Which type of matrices may have problems when we solve
directly ?

Norm of a matrix (Am×n):

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij |, ‖A‖1 = max
1≤j≤n

m∑
i=1

|aij |, ‖A‖2 =√
λmax(A∗A), ‖A‖F =

√∑m
i=1
∑n

j=1 |aij |2 =
√

trace(A∗A).

Condition number: k (A) = ‖A‖‖A−1‖.

Effect of condition number:

If the coefficient matrix is ill-conditioned then round-off will lead
huge error in the solution.

if A is ill-conditioned (a small change in some entries leads
nonsingular to singular), A−1 will not be computed accurately.
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if A is ill-conditioned (a small change in some entries leads
nonsingular to singular), A−1 will not be computed accurately.
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DRAWBACKS OF DIRECT M ETHODS

Disasters due to bad numerics

On February 25, 1991, during the Gulf War, an American Patriot
Missile battery in Dharan, Saudi Arabia, failed to track and intercept an
incoming Iraqi Scud missile. This resulted in 28 deaths and 100
injuries.
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DRAWBACKS OF GAUSSIAN ELIMINATION

Disasters due to bad numerics

On June 4, 1996 an unmanned Ariane 5 rocket launched by the
European Space Agency exploded just 40seconds after its lift-off from
Kourou, French Guiana. Ariane explosion costing $7 billion + The
destroyed rocket and its cargo were valued at $500 million.

and so on .............
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ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS

It is natural to ask why we would want or even need to develop
iterative techniques.

For systems of small dimension, there is no need. Direct
techniques will perform very efficiently.

For systems with large, sparse coefficient matrices, direct
techniques are often less efficient than iterative techniques.

More appropriate when the number of equations involved is large,
or when the matrix is sparse (many coefficients whose value is
zero).
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ITERATIVE SOLUTION PROCEDURE

Main Steps:

Step-1: Rewrite the system Ax = b as x = Tx + c

Step-1: Starting with initial approximation x (0), generate the
iterative method by x (k ) = Tx (k ) + c. Here the matrix T is called
iteration matrix.

Iterative methods:
Jacobi’s Method (Carl Gustav Jakob Jacobi, 1804-1851)
Gauss-Seidel Method (Carl Friedrich Gauss 1777-1855, Philipp
Ludwig von Seidel 1821-1896)
Successive Overrelaxation (SOR) Method

J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 21 / 79



ITERATIVE SOLUTION PROCEDURE

Main Steps:

Step-1: Rewrite the system Ax = b as x = Tx + c

Step-1: Starting with initial approximation x (0), generate the
iterative method by x (k ) = Tx (k ) + c. Here the matrix T is called
iteration matrix.

Iterative methods:
Jacobi’s Method (Carl Gustav Jakob Jacobi, 1804-1851)
Gauss-Seidel Method (Carl Friedrich Gauss 1777-1855, Philipp
Ludwig von Seidel 1821-1896)
Successive Overrelaxation (SOR) Method

J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 21 / 79



ITERATIVE SOLUTION PROCEDURE

Main Steps:

Step-1: Rewrite the system Ax = b as x = Tx + c

Step-1: Starting with initial approximation x (0), generate the
iterative method by x (k ) = Tx (k ) + c. Here the matrix T is called
iteration matrix.

Iterative methods:
Jacobi’s Method (Carl Gustav Jakob Jacobi, 1804-1851)
Gauss-Seidel Method (Carl Friedrich Gauss 1777-1855, Philipp
Ludwig von Seidel 1821-1896)
Successive Overrelaxation (SOR) Method

J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 21 / 79



JACOBI’S METHOD

Consider the linear system:
Ax = b

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bn

 .

The Jacobi Method is derived by decomposing the matrix A into its
diagonal (D), strictly lower triangular (L) and strictly upper triangular
(U) such that

A = D + L + U.
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JACOBI’S METHOD

Thus the system Ax = b is rewritten as

x = −D−1(L + U)x + D−1b = Tx + c,

where T = −D−1(L + U) = D−1(D − A) and c = D−1b

Hence the Jacobi’s iterative method in matrix form is given by

x (k ) = Tx (k−1) + c, where T = −D−1(L + U), c = D−1b

and k = 1,2,3, . . .
Jacobi’s iterative method in component form is given by

x (k )
i =

1
aii

bi −
n∑

j=1
j 6=i

aijx
(k−1)
j

, i = 1,2, . . . ,n and k = 1,2,3, . . .
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JACOBI’S METHOD

Example: Use 5-digit rounding and Jacobi method to solve the
following system:

2x1 − x2 = 1
−x1 + 3x2 − x3 = 8

−x2 + 2x3 = −5

Solution: From D =

2 0 0
0 3 0
0 0 2

 , (L + U) =

 0 −1 0
−1 0 −1
0 −1 0

 , b =

 1
8
−5

,

we have

T = −D−1(L + U) =

 0 0.5000 0
0.3333 0 0.3333

0 0.5000 0

 , c =

 0.5000
2.6667
−2.5000


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JACOBI’S METHOD
Iteration-1: Taking x (0) = [0 0 0]T , we can compute

x (1) = Tx (0) + c =

0
0
0

 +

 0.5000
2.6667
−2.5000

 =

 0.5000
2.6667
−2.5000



Iteration-2:

x (2) =

 0 0.5000 0
0.3333 0 0.3333

0 0.5000 0


 0.5000

2.6667
−2.5000

+

 0.5000
2.6667
−2.5000

 =

 1.8333
2.0000
−1.1667


After 20 iterations (Iteration-21):

x (21) =

 2
3
−1

⇔ x1 = 2, x2 = 3, x3 = −1
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GAUSS-SEIDEL METHOD

In Gauss-Seidel method, we rewrite the system Ax = b as

x = −(D + L)−1Ux + (D + L)−1b = Tx + c,

where T = −(D + L)−1U and c = (D + L)−1b

Hence the Gauss-Seidel iterative method in matrix form is given
by

x (k ) = Tx (k−1) + c, where T = −(D + L)−1U, c = (D + L)−1b

and k = 1,2,3, . . .
Jacobi’s iterative method in component form is given by

x (k )
i =

1
aii

bi −
i−1∑
j=1

aijx
(k )
j −

n∑
j=i+1

aijx
(k−1)
j

,
where i = 1,2, . . . ,n and k = 1,2,3, . . .
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GAUSS-SEIDEL METHOD

Example: Use 5-digit rounding and Jacobi method to solve the
following system:

2x1 − x2 = 1
−x1 + 3x2 − x3 = 8

−x2 + 2x3 = −5

Solution: From D + L =

 2 0 0
−1 3 0
0 −1 2

 , U =

0 −1 0
0 0 −1
0 0 0

 , b =

 1
8
−5

,

we have

T = −(D + L)−1U =

0 0.5000 0
0 0.1667 0.3333
0 0.0833 0.1667

 , c =

 0.5000
2.8333
−1.0833



J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 27 / 79



GAUSS-SEIDEL METHOD

Example: Use 5-digit rounding and Jacobi method to solve the
following system:

2x1 − x2 = 1
−x1 + 3x2 − x3 = 8

−x2 + 2x3 = −5

Solution: From D + L =

 2 0 0
−1 3 0
0 −1 2

 , U =

0 −1 0
0 0 −1
0 0 0

 , b =

 1
8
−5

,

we have

T = −(D + L)−1U =

0 0.5000 0
0 0.1667 0.3333
0 0.0833 0.1667

 , c =

 0.5000
2.8333
−1.0833



J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 27 / 79



GAUSS-SEIDEL METHOD

Iteration-1: Taking x (0) = [0 0 0]T , we can compute

x (1) = Tx (0) + c =

0
0
0

 +

 0.5000
2.8333
−1.0833

 =

 0.5000
2.8333
−1.0833



Iteration-2:

x (2) =

0 0.5000 0
0 0.1667 0.3333
0 0.0833 0.1667


 0.5000

2.8333
−1.0833

 +

 0.5000
2.8333
−1.0833

 =

 1.9167
2.9444
−1.0278


Iteration-3:

x (3) =

0 0.5000 0
0 0.1667 0.3333
0 0.0833 0.1667


 1.9167

2.9444
−1.0278

 +

 0.5000
2.8333
−1.0833

 =

 1.9722
2.9815
−1.0093


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GAUSS-SEIDEL METHOD

Iteration-8:

x (8) =

0 0.5000 0
0 0.1667 0.3333
0 0.0833 0.1667


 1.9997

2.9998
−1.0001

 +

 0.5000
2.8333
−1.0833

 =

 1.9999
2.9999
−1.0000



After 8 iterations (Iteration-9):

x (9) =

0 0.5000 0
0 0.1667 0.3333
0 0.0833 0.1667


 1.9999

2.9999
−1.0000

 +

 0.5000
2.8333
−1.0833

 =

 2
3
−1


Therefore, we obtain the solution x1 = 2, x2 = 3, x3 = −1
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 =

 2
3
−1


Therefore, we obtain the solution x1 = 2, x2 = 3, x3 = −1
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SPECTRAL RADIUS AND NORM OF A MATRIX

Recall:
Norm of a matrix (An×n):

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |, ‖A‖1 = max
1≤j≤n

n∑
i=1

|aij |, ‖A‖2 =√
λmax(A∗A), ‖A‖F =

√∑n
i=1
∑n

j=1 |aij |2 =
√

trace(A∗A).

Spectral radius: The spectral radius of a matrix A ∈ Rn×n is
denoted by ρ(A) and defined by

ρ(A) = max
1≤i≤n

{|λi | : λi ’s are eigen value of A}.

Relation between norm and ρ(A): ρ(A) ≤ ‖A‖.
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STOPPING CRITERIA

The following stopping rules are commonly used.

Stop if the successive error, ‖x (k ) − x (k−1)‖ < ε.

Stop if the residual error, ‖b − Ax (k )‖ < ε.

Stop if the relative error,
‖x (k ) − x (k−1)‖
‖x (k )‖

< ε.
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CONVERGENCE OF ITERATIVE METHODS

THEOREM

Consider a non-singular system Ax = b and its equivalent form be
x = Tx + c. Then for any x (0) ∈ Rn, the sequence {x (k )} defined by
x (k ) = Tx (k−1) + c (k = 1,2, . . .), converges to the unique solution A−1b,
of the system Ax = b if and only if ρ(T ) < 1.

COROLLARY

Consider a non-singular system Ax = b and its equivalent form be
x = Tx + c. Then for any x (0) ∈ Rn, the sequence {x (k )} defined by
x (k ) = Tx (k−1) + c (k = 1,2, . . .), converges to the unique solution A−1b,
of the system Ax = b if and only if ‖T‖ < 1.

J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 32 / 79



CONVERGENCE OF ITERATIVE METHODS

THEOREM

Consider a non-singular system Ax = b and its equivalent form be
x = Tx + c. Then for any x (0) ∈ Rn, the sequence {x (k )} defined by
x (k ) = Tx (k−1) + c (k = 1,2, . . .), converges to the unique solution A−1b,
of the system Ax = b if and only if ρ(T ) < 1.

COROLLARY

Consider a non-singular system Ax = b and its equivalent form be
x = Tx + c. Then for any x (0) ∈ Rn, the sequence {x (k )} defined by
x (k ) = Tx (k−1) + c (k = 1,2, . . .), converges to the unique solution A−1b,
of the system Ax = b if and only if ‖T‖ < 1.

J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 32 / 79



CONVERGENCE OF JACOBI’S AND GAUSS-SEIDEL

METHOD

THEOREM

If A is strictly diagonally dominant ( or symmetric and positive definite
), then for any choice x (0), the sequence {x (k )} obtained by both the
Jacobi and Gauss-Seidel iterative methods, converge to the unique
solution A−1b, of Ax = b.

THEOREM (STEIN-ROSENBERG)
If aij ≤ 0 for each i 6= j and aii > 0 for each i = 1,2, . . . ,n. Then one
and only one of the following statements holds:

0 ≤ ρ (TG) < ρ (TJ ) < 1
1 < ρ (TJ ) < ρ (TG)

ρ (TJ ) = 0 = ρ (TG)
ρ (TJ ) = 1 = ρ (TG)
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SUCCESSIVE OVERRELAXATION (SOR) METHOD

The SOR method is an iterative technique used to solve a system
of linear equations Ax = b by introducing a positive parameter ω.

Using Ax = b, we can write Dx = Dx + ω(b − Ax).

Hence the SOR iterative scheme is generated as

x (k ) = Tωx (k−1) + cω,

where Tω is the iteration matrix.

Choose ω such that ρ(Tω) < 1 or ‖Tω‖ < 1.
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SOR METHOD BASED ON JACOBI METHOD

It extends the Jacobi method by introducing a relaxation factor ω
to improve convergence.
The iterative formula for the SOR method in matrix form, based on
the Jacobi method, is:

x (k+1) = (1− ω)x (k ) + ωD−1
(
b − (L + U)x (k )

)
where A = D + L + U is the decomposition of matrix A into its
diagonal (D), strictly lower triangular (L), and strictly upperr
triangular (U).

Component-wise: For i = 1,2, . . . ,n,

x (k )
i = x (k−1)

i +
ω

aii

bi −
n∑

j=1

aijx
(k−1)
j

, k = 1,2,3, . . .
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SOR ITERATION FORMULA FOR GAUSS-SEIDEL

METHOD

The iterative formula for the SOR method in matrix form, based on
the Gauss-Seidel method, is:

x (k+1) = (D + ωL)−1
[
ωb − (ωU + (ω − 1)D) x (k )

]
where A = D + L + U is the decomposition of matrix A into its
diagonal (D), strictly lower triangular (L), and strictly upperr
triangular (U).

Component-wise: For i = 1,2, . . . ,n,

x (k )
i = x (k−1)

i +
ω

aii

bi −
i−1∑
j=1

aijx
(k )
j −

n∑
j=i

aijx
(k−1)
j

, k = 1,2,3, . . .
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SOR ITERATION METHODS

Example: Solve the following system

4x1 + 3x2 = 24, 3x1 + 4x2 − x3 = 30, −x2 + 4x3 = −24

by Gauss-Seidel method with x (0) = (1,1,1)T

by Gauss-Seidel with SOR and ω = 1.25, x (0) = (1,1,1)T

Solution: Tgs =

0 −0.7500 0
0 0.5625 0.2500
0 0.1406 0.0625

 , cgs =

 6.0000
3.0000
−5.2500



Tω =

−0.2500 −0.9375 0
0.2344 0.6289 0.3125
0.0732 0.1965 −0.1523

 , cω =

 7.5000
2.3438
−6.7676


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SOR ITERATION METHODS

TABLE: Gauss-Seidel with SOR

k 1 2 3 4 5 6 7

x (k )
6.3125 2.6223 3.1333 2.9571 3.0037 2.9963 3.0000
3.5195 3.9585 4.0103 4.0075 4.0029 4.0009 4.0003
-6.6501 -4.6004 -5.0967 -4.9735 -5.0057 -4.9983 -5.0003

TABLE: Gauss-Seidel without SOR

k 1 2 3 4 5 6 7

x (k )
5.2500 3.1406 3.0879 3.0549 3.0343 3.0215 3.0134
3.8125 3.8828 3.9268 3.9542 3.9714 3.9821 3.9888
-5.0469 -5.0293 -5.0183 -5.0114 -5.0072 -5.0045 -5.0028
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CONVERGENCE OF SOR ITERATION METHODS

The convergence of the SOR method depends on the choice of ω.

THEOREM (KAHAN)
Consider a system Ax = b where A ∈ Rn×n and b ∈ Rn. If aii 6= 0 for
each i = 1,2, . . . ,n then ρ(Tω) ≥ |ω − 1|.

Note: The above theorem tells us that the SOR method can converge
only if 0 < ω < 2.

THEOREM (OSTROWSKI-REICH)
Consider a system Ax = b where A ∈ Rn×n and b ∈ Rn. If A is positive
definite matrix and 0 < ω < 2, then the SOR method converges for any
choice of x (0).
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OPTIMUM VALUE OF ω FOR SOR ITERATION METHODS

The optimal value of ω minimizes the spectral radius of the iteration
matrix.

THEOREM

Consider a system Ax = b where A ∈ Rn×n and b ∈ Rn. If A is positive
definite and tridiagonal, then

ρ(Tgs) = ρ(Tj ) < 1
the optimal choice for ω is

ω =
2

1 +
√

1− [ρ(Tj )]2
,

where Tj is the iteration matrix of Jacobi’s Method.
ρ(Tω) = ω − 1
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CLASSIFICATION OF SOR METHODS

Under-relaxation: If 0 < ω < 1, the method is called under-relaxed.
It may converge slowly.
It is used to make a non-convergent system converge, or to
speedup convergence by avoiding oscillations

Over-relaxation: If 1 < ω < 2, the method is called over-relaxed.
It generally converges faster.
It is used to accelerate the convergence, if approximate solution
moving toward the exact solution, at a slow rate.
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OPTIMUM VALUE OF ω FOR SOR ITERATION METHODS

Example: Find the optimal choice of ω for the following system

4x1 + 3x2 = 24, 3x1 + 4x2 − x3 = 30, −x2 + 4x3 = −24

Solution: Tj = −D−1(L + U) =

0.25 0 0
0 0.25 0
0 0 0.25


 0 −3 0
−3 0 1
0 1 0



=

 0 −0.75 0
−0.75 0 0.25

0 0.25 0


Compute eigenvalues of Tj : λ1 = 0, λ2 =

√
0.625, λ3 = −

√
0.625.

Compute optimum value of ω :

ω =
2

1 +
√

1− 0.625
≈ 1.24
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APPLICATION
Consider the two-dimensional Poisson’s equation

− ∂2u
∂x2 −

∂2u
∂y2 = f (x , y ), (x , y ) ∈ = [0,1]× [0,1]

with u(x , y ) = 0 on the boundary ∂ . Using 5-point stencil central
difference scheme on a discretizing the unit square domain with n
interior nodes, we obtain the following system

Ax = b, A ∈ Rn2×n2
, b ∈ Rn2

and the coefficient matrix will be of the form A = I ⊗ P + P ⊗ I, where

P =


−2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 −2

 .
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These two schemes motivates to study different type of splittings
of A.

A decomposition of the form A = B − C is called splitting of the
matrix A ∈ Rm×n

To deal non singular system, several iterative methods are
proposed to improve the convergence rate as well better
complexity. For more details one can refer [3, 6, 7].

[1] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sciences.
SIAM, 1994.

[3] H. Kotakemori, K. Harada, M. Morimoto, and H. Niki. A comparison theorem for the
iterative method with the preconditioner. J. Comput. Appl. Math. 145(2):373-378, 2002.

[4] W. Li. A note on the preconditioned gauss-seidel method for linear systems. J. Comput.

Appl. Math. 182(1):81-90, 2005.
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MATRIX SPLITTING BASED ITERATIVE SCHEMES

The singular and rectangular systems are arises in various branch
of Science and Engineering such as Markov Chain, Stochastic
process, forecast modelling and partial differential equations.

To deal such systems, in recent past many researchers has
considered the splitting theory such as proper regular splitting and
proper weak regular splitting.For example, If A = B − C is a proper
splitting of A ∈ Rm×n, then the iterative scheme

xk+1 = B†Cxk + B†b (1)

for (1) converges to A†b, the least squares solution for any initial
vector x0 iff ρ(B†C) < 1.
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INTRODUCTION

Drawbacks:
In the previous iterative scheme, we need to check the spectral
radius and computing spectral radius for large system is
computationally expensive.

In this talk, we will discuss an alternating iterative scheme which can
avoid the spectral radius calculation.

J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 51 / 79



INTRODUCTION

Drawbacks:
In the previous iterative scheme, we need to check the spectral
radius and computing spectral radius for large system is
computationally expensive.

In this talk, we will discuss an alternating iterative scheme which can
avoid the spectral radius calculation.

J. K. Sahoo (BITS Pilani-Goa) Splitting based Iterative Methods IIT Indore-GIAN-25 51 / 79



BASIC TERMINOLOGY

DEFINITION (MOORE-PENROSE INVERSE)
Let A ∈ Cm×n. If a matrix X ∈ Cn×m satisfies the following properties
AXA = A, XAX = X , (AX )∗ = AX , (XA)∗ = XA, then X is called the
Moore-Penrose inverse of A and denoted as A†.

DEFINITION

A splitting A = B − C is called proper splitting of A ∈ Rm×n if
R(A) = R(B) and N(A) = N(B).

DEFINITION (DEFINITION 1.1, 1.2[5])

Let A = B − C be a proper splitting of A ∈ Rm×n. Then the splitting is
called proper regular splitting if B† ≥ 0 and C ≥ 0 and called a proper
weak regular splitting if B† ≥ 0 and B†C ≥ 0.

[5] L. Jena, D. Mishra, and S. Pani. Convergence and comparison theorems for single and

double decompositions of rectangular matrices. Calcolo, 51(1):141-149, 2014.
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BASIC TERMINOLOGY & RESULTS

Based on the above definitions and splitting, the following results have
been proved in [5] and [2].

THEOREM (THEOREM 1.3, [5])

Let A = B − C be a proper regular splitting of A ∈ Rm×n. Then the
Moore-Penrose inverse A† ≥ 0 if and only if the spectral radius of the
iteration matrix is less than 1, i.e., ρ(B†C) < 1.

THEOREM (THEOREM 3, [2])

Let A = B − C be a proper weak regular splitting of A ∈ Rm×n. Then
A† ≥ 0 if and only if ρ(B†C) < 1.

[2] A. Berman and R. J. Plemmons. Cones and iterative methods for best least squares solutions

of linear systems. SIAM Journal on Numerical Analysis, 11(1):145-154, 1974.
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THREE STEP ALTERNATING ITERATIVE SCHEME

Let A = B − C = X − Y = S − T be three proper splittings of the
matrix A ∈ Rm×n. The followings are the proposed iterative
schemes for the above three splittings

xk+1/3 = B†Cxk + B†b (2)

xk+1/2 = X †Yxk+1/3 + X †b (3)

xk+1 = S†Txk+1/2 + S†b (4)

which provide the solution of the system (1) iteratively for any
initial guess x0.
By simplifying the iterative schemes (2), (3) and (4) we have the
alternating iteration

xk+1 = Hxk + Qb, (5)

where H = S†TX †YB†C and Q = S†(TX †YB† + TX † + I).
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THREE STEP ALTERNATING ITERATIVE SCHEME
Note that convergence of individual splitting does not imply the
convergence of alternating iterative scheme which can be seen in the
next example.

EXAMPLE

Consider A =

[
1 5 −2 −3
2 −2 4 −2
−1 0 −1 3

]
=

[
33
10

−21
10

9
2

−51
5

−11
5

32
5

−11
2

93
10

−23
5

77
10

−48
5

119
10

]
−

[
23
10

−71
10

13
2

−36
5

−21
5

42
5

−19
2

113
10

−18
5

77
10

−43
5

89
10

]

=

[
46
5

29
2

−87
10

−368
5

2
5

−47
10 8 227

10
2
5

3
5

3
5

8
5

]
−

[
41
5

19
2

−67
10

−353
5

−8
5

−27
10 4 247

10
7
5

3
5

8
5

−7
5

]

=

[
99
10 7 −83

10
−997

10
−23

5
−9
2

24
5

473
10

19
10

13
5

37
10

111
10

]
−

[
89
10 2 −63

10
−967

10
−33

5
−5
2

4
5

493
10

29
10

13
5

47
10

81
10

]
= D − E = F − G = J − K

are three proper splittings of A. Here ρ(D†E) = 0.5899 < 1, ρ(F†G) = 0.8378 < 1, ρ(J†K ) = 0.8713 < 1 but
ρ(H) = 2.1125 6< 1.
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THREE STEP ALTERNATING ITERATIVE SCHEME

The convergence and comparison theorem of the proposed iteration
scheme which we proved as the followings:

THEOREM (1)

Let A = B − C = X − Y = S − T be three proper regular splittings of a
semi-monotone matrix A ∈ Rm×n.Then ρ(H) = ρ(S†TX †YB†C) < 1.

THEOREM (2)

Let A ∈ Rm×n be a semi-monotone matrix and
A = D − E = F −G = J − K be three proper regular splittings of A with
R(D + J − A + KF †E) = R(A) and N(D + J − A + KF †E) = N(A). Then,
ρ(H) ≤ min{ρ(D†E), ρ(F †G), ρ(J†K )} < 1.
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PRECONDITIONED ITERATIVE METHOD

In this section we will discuss the convergence of the system
when A is not semi-monotone.

In that case Theorem (1) may fail.
Then we will find a matrix P which makes it convergence.Now
consider the following system

PAx = Pb, A ∈ Rm×n, x ∈ Rn and b ∈ Rm (6)

where the matrix P is a non singular matrix of order m. Let
PA = Kp − Lp be a splitting of the matrix PA ∈ Rn×n, where Kp and
Lp have same order as of PA.
The iterative scheme of the modified system (6) is defined by,

xk+1 = K †p Lpxk + K †p Pb. (7)

If PA = Kp − Lp is a proper splitting of the matrix PA, then the
iterative scheme (7) will converge to the least square solution A†b
for any initial guess x0 if and only if ρ(K †p Lp) < 1.
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PRECONDITIONED ITERATIVE METHOD

The comparison between preconditioned approach and proper weak
regular splitting approach has discussed in the next theorem.

THEOREM

Let A = M − N be a proper regular splitting of a semi-monotone matrix
A ∈ Rm×n. Assume that there exists an orthogonal matrix P ∈ Rm×m

such that A†P−1 ≥ 0. If PA = Mp − Np is a proper weak regular splitting
of PA and M†pP ≥ M†, then ρ(M†pNp) ≤ ρ(M†N) < 1.

THEOREM

Let A = M − N be a convergent proper splitting of A ∈ Rm×n. Let
P ∈ Rm×m be an nonpositive orthogonal matrix such that PA = Mp −Np

is a proper regular splitting of PA. If A† ≤ 0 and M†pP ≤ M†, then
ρ(M†pNp) ≤ ρ(M†N) < 1.
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ITERATIVE SCHEME BASED ON REGULARIZATION

To obtain the unique least square solution A†b of Ax = b, we need
to solve the normal equation AT Ax = AT b. But in general the
matrix AT A is ill-conditioned matrix [4].

Therefore, we consider the following well-posed linear system:

(AT A + λI)x = AT b, (8)

where λ > 0 is called regularization parameter.
In [1], it is proved that the matrix AT A + λI is nonsingular for every
λ > 0 . If we assume B = AT A + λI, then the system (8) reduces to
the following nonsingular system:

Bx = AT b. (9)
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ITERATIVE SCHEME BASED ON REGULARIZATION

In [1], it also proved that B−1AT b converges to A†b when λ→ 0.

We consider B = Mλ−Nλ is a splitting of the nonsingular matrix B,
then the iterative scheme

xk+1 = M−1
λ Nλxk + M−1

λ AT b (10)

for the system (9) converges to B−1AT b which is equal to A†b.

We have the following comparison result for the above setting:

THEOREM

Suppose A = M − N be a proper convergent weak splitting of type II.
Let B = Mλ − Nλ be a convergent weak splitting of type I of the matrix
B. If M−1

λ AT ≥ M†, then ρ(M−1
λ Nλ) ≤ ρ(M†N) < 1.
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NUMERICAL EXAMPLES

EXAMPLE (1)

Consider the system Ax = b, where A =

 6.2 9.7 −7.5 −4.3
3.4 −8.8 2.6 5.0
−7.3 −2.8 6.1 1.3


and b = (0,1,−1)T . Clearly A is semi-monotone matrix since
A† ≥ 0.

Consider the following three proper regular splittings of A as

A =

[
7.39962 9.96576 −7.26446 −3.80128
5.35168 −7.64282 3.33142 5.80321
−6.19108 −1.23196 7.16198 1.85758

]
−

[
1.19962 0.26576 0.23554 0.498716
1.95168 1.15718 0.73142 0.803207
1.10892 1.56804 1.06198 0.557576

]
(Splt-1)

=

[
6.76084 11.3339 −6.45554 −3.97232
5.8871 −8.76498 3.64066 6.46661
−6.45554 −1.09718 7.48736 1.89716

]
−

[
0.56084 1.63388 1.04446 0.327683
2.4871 0.03502 1.04066 1.46661
0.84446 1.70282 1.38736 0.597162

]
(Splt-2)

=

[
7.48756 10.7622 −6.48554 −3.56629
6.09602 −8.5369 3.79814 6.56695
−6.28704 −2.2252 6.56918 1.77155

]
−

[
1.28756 1.06216 1.01446 0.733707
2.69602 0.2631 1.19814 1.56695
1.01296 0.5748 0.46918 0.471554

]
(Splt-3)

Here the spectral radius of the iteration matrix, i.e., ρ(H) = 0.492122 which is less than
min{ρ(K†L) = 0.774462, ρ(U†V ) = 0.8130275, ρ(X†Y ) = 0.787961} < 1.
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NUMERICAL EXAMPLES

EXAMPLE (2)

Let A =

[
8.3 −6.7 4.0 −2.6
−7.0 2.9 0.9 −1.3
7.7 −3.2 −7.4 3.1

]
= K − L

=

[
−1.49724 −13.2765 11.0203 −15.1059
−7.3728 −1.87972 −3.13564 −4.5578
13.4498 −3.50256 −12.5629 7.12079

]
−

[
−9.79724 −6.57652 7.02032 −12.5059
−0.3728 −4.77972 −4.03564 −3.2578
5.7498 −0.30256 −5.16292 4.02079

]
be a convergent proper splitting since ρ(K†L) = 0.861797 < 1.

Let P =

[
−1 0 0
0 0 −1
0 −1 0

]
be an nonpositive orthogonal matrix such that PA = Kp − Lp

=

[
−7.09049 8.31709 −2.38373 4.18852
−7.39842 3.63104 8.74419 −2.92637
7.98315 −2.80637 0.346307 1.55539

]
−

[
−7.09049 8.31709 −2.38373 4.18852
−7.39842 3.63104 8.74419 −2.92637
7.98315 −2.80637 0.346307 1.55539

]
.

is a proper regular splitting of PA.
Here A† ≤ 0, ρ(K†p Lp ) = 0.5989862 ≤ 0.8617974 = ρ(K†L) < 1.
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NUMERICAL EXAMPLES

TABLE: Convergence Analysis of Alternating Scheme

Example ε N ‖Axk − b‖2 ‖xk − A†b‖2 MT
Ex-1 10−9 8 2.8929e−11 6.2249e−12 0.0015
Ex-1 10−15 12 1.4315e−16 3.0803e−12 0.0024

TABLE: Comparison Analysis of Alternating Scheme

Splittings ε N ‖Axk − b‖2 ‖xk − A†b‖2 MT
Alternating Scheme 10−9 8 2.8929e−11 6.2249e−12 0.0015

Splitting 1 10−9 14 1.5582e−9 2.9480e−10 0.0026
Splitting 2 10−9 22 1.9168e−9 4.2316e−10 0.0039
Splitting 3 10−9 28 2.9515e−9 6.2998e−10 0.0049
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NUMERICAL EXAMPLES

TABLE: Comparison Analysis between K †L and K †p Lp

Splittings ε N ‖Axk − b‖2 ‖xk − A†b‖2 MT
K − L 10−9 204 2.2831e−7 9.3700e−9 0.1361

Kp − Lp 10−9 32 1.1962e−8 6.1307e−10 0.0073
K − L 10−15 345 2.1527e−13 8.8351e−15 0.3721

Kp − Lp 10−15 51 1.4127e−14 7.24056e−16 0.0133
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NUMERICAL EXAMPLES

EXAMPLE (3)

Let us consider the following two-dimensional partial differential
equation

−∂
2u
∂2x
− ∂2u
∂2y

+ 0.5
∂u
∂x

+ 2
∂u
∂y

= f (x , y ), (x , y ) ∈ [0,1]× [0,1]

with Dirichlet boundary conditions.

If we use central difference scheme
on a uniform grid with (N + 2) nodes, then we will obtain a linear
system Ax = b, where the coefficient matrix is of order N2 and of the
following form

A = I ⊗ P + Q ⊗ I,

P = trid (−(h + 1),4, (h − 1)) and Q = trid
(
−h + 4

4
,0,

h − 4
4

)
.
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NUMERICAL EXAMPLES

The comparison analysis of the three step with the schemes of [8], and
[9] are summarized in Table 6.

[8] S.Q. Shen and T. Z. Huang. Convergence and comparison theorems for double splittings

of matrices. Comput. Math. Appl. 51(12):1751-1760, 2006.

[9] S. Srivastava, D. Gupta, and A. Singh. An iterative method for solving singular linear

systems with index one. Afrika Matematika, 27(5-6):815-824, 2016
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NUMERICAL EXAMPLES

TABLE: Comparison of error bounds and mean processing time for ε = 10−12

Order of A Method ‖Axk − b‖2 ‖xk − A−1b‖2 MT

100(N = 10)
Method of [9] 8.6544e−15 1.5445e−14 0.00845
Method of [8] 3.7380e−12 2.1915e−11 0.00138
Three-step 1.8618e−13 5.2171e−13 0.00055

400(N = 20)
Method of [9] 4.3592e−14 8.0318e−14 0.27489
Method of [8] 3.8949e−12 8.2797e−11 0.37036
Three-step 2.0225e−13 1.5958e−12 0.00329

900(N = 30)
Method of [9] 1.4683e−13 3.9423e−13 3.23154
Method of [8] 3.9572e−12 1.8246e−10 4.65695
Three-step 5.6277e−13 3.0136e−12 0.0472

1600(N = 40)
Method of [9] 3.2206e−13 3.0576e−12 18.58005
Method of [8] 4.0005e−12 3.2221e−10 23.28531
Three-step 1.3450e−12 4.1725e−12 0.19843
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NUMERICAL EXAMPLES
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FIGURE: Comparison of mean processing time for different order matrices
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NUMERICAL EXAMPLES
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FIGURE: Comparison of time complexity for different order matrices
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NUMERICAL EXAMPLES
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NUMERICAL EXAMPLES
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CONCLUSION AND REMARKS

We have discussed theoretical results for the proposed alternating
iterative schemes. Numerical examples are provided to justify the
schemes.
The proposed scheme converges much faster than the well-known
splittings. We also discuss a suitable choice of preconditioned
matrix, or regularization parameter can make the system
well-posed.
Other regularization techniques can be further used for solving
singular system.
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